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Weak chaos in one-dimensional quantum transport: The 1/f2 law and the breakdown
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We study quantum transports in the one-dimensional Kronig-Penny model in a static electric field. S
matrices as a function of the number of barriers are examined in the complex plane. They show a stag-
nant chaos around torus in a weak field case, while, in a strong field case, wandering from one stagnant
region to another in an unpredictable way. The power spectra of transmission coefficients show a
universal 1/f? behavior with the exponent independent on both the strength of field and width of bar-
riers. The Allan variance indicates a breakdown of the law of large numbers.

PACS number(s): 03.50. —z, 05.45.+b, 72.10.—d

Despite the accumulation of considerable works on
quantum mechanics of chaotic systems, there exists a pre-
vailing belief that, due to the linearity of the Schrodinger
equation, the quantum system exhibits no chaos charac-
terized by standard diagnostics of Kolmogorov-Sinai en-
tropy or positive Lyapunov exponents. We can therefore
envisage merely a quantum analogue of chaos, i.e., quan-
tum chaology, rather than the genuine quantum chaos
[1].

On the other hand, a rapid progress in fabrication of
nanoscale structures has made it possible to see typical
quantum-mechanical effects such as ballistic transports
and tunnelings [2,3]. In particular, a growing attention
has been paid to superlattices (e.g., GaAs/AlAs) with al-
ternating sequence of potential barriers and wells. In the
periodic superlattice in an applied electric field, resonant
tunneling conditions are broken and the transition occurs
from extended to localized ‘‘Wannier-Stark” states.
While some recent studies on the quantum transport in
one-dimensional  structures indicate = complicated
transmission properties, most of them assume either one
of hierarchical (e.g., Fibonacci-type) and random poten-
tials.

In this Brief Report, we shall analyze a weak chaos in
the quantum transport in a strictly regular superlattice,
i.e., the Kronig-Penny model in the constant electric
field. S matrices will be studied as a function of the num-
ber of barriers. Although Jauslin first considered a §-
function limit of this model [4], he showed neither the
universal integer exponent of the power spectra nor strik-
ing properties of S matrices in the complex plane.

The Hamiltonian under consideration is given by

#* d?
= 2m I

+V(x)—Fx , (1)

with the periodic potential: V(x)=V, for (j —1)a <x
<(j—1lla+d and =0 for (j—1)a+d=<x =<ja with
j=12,... . In (1), the last term of right hand side
represents the coupling with an electric field #. For sim-
plicity, Fx is here replaced by a stairwise function
Fx=F37-16(x — ja) with 6(x) for step function.
Suppose V,=explikox)+S;,(n)exp( —ikyx) as a sum
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of the incident and reflected waves for x <O
and ¥,=S,,(n)exp(ik,x) as the transmitted wave
after the nth barrier. Considering the over-barrier tun-
neling throughout, the wave functions at the jth

(1=j=<n) barrier and well are given by V¥, Ce“”

. ik
+Dje " and e’ +Bje ", respectively, where

K;=Vk+F(j—1) and k; =Vk}+Fj  with
F=2m 57/ﬁ2 and (ko)?*=(kg)? ~2m Vo /ﬁz Owing to the
continuity and smoothness conditions at the barrier-well
junction points, we have a conservative discrete map be-
tween successive set of coefficients as

4; A4;
B, =M; B, |’ (2a)
where the transfer matrix M; is expressed by
o ki 0 @, By
Mj=‘—{ 0 eikj(j—l)a Blj aj;
eiK’d 0 ay; By
1o e By @y
k-1l =Da=d] 0
X 0 o~ kj—illi—ba—d] (2b)
with  a;=(k;+«;)/(2k;),  ay;=(k;+k;_1)/(2)),

Bij=(k;—«k;)/(2k;), and PB,;=(k;—k;_)/(2c;). It
should be noted in the §-function limit of walls (d —0
with V,d =1), the map in (2) reduces to the greatly
simplified version identical to that for barrier penetra-
tions [4]. By iterating (2) under the boundary condition
Ay=1, By=S,, and A4,=S,,, B,=0, one obtains
Spp(n)=det@, /(Q, )y and Si( ")_ (9,)217(Qy )
with Q, =T j_lM The transmission and reflection
coefficients are given by T,=(k,/k)|S,(n)[* and
R, =1S,(n)|% respectively. The electnc conductance is
simply o,=(2e%/h)T,. The validity of our computa-
tions will be justified by noting the unitarity
(T,+R,=1.

Keeping fixed both the periodicity a (=1) and the area
of each barrier Vd (=1), we shall present numerical re-
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sults first in the limiting case d /a —0 and then in general
cases d /a70. In the absence of an electric field, Bloch
bands are formed due to the translational lattice symme-
try. Transmission coefficient T, shows periodic oscilla-
tions for energies (#ik,)?/2m belonging to allowed bands.
When the electric field is switched on, the following
features emerge.

(I) A weak field case F <<F,(=(w/a)?): Here Bloch
bands are slightly tilted and k, value increases within a
single band. The number of Zener tunnelings at the zone
boundary kgz(=wl/a with 1=1,2,...,) is practically
vanishing. T, shows however, a nonstationary erratic
behavior around the plateau value as displayed in Fig.
1(a). Reflection component of S matrix, S;(n), wanders
in an erratic way [see Fig. 1(b)] in the complex plane. Its
motion is stagnant around the torus rather than exhibit-
ing a global chaos. This fact leads to the absence of the
positive Lyapunov exponent, although the distribution
function of local Lyapunov exponents will have positive
components. Corresponding to this peculiar feature, the
power spectra for the time sequence {T,} defined by
P(f)=|N"'SN_ T, e 2m/m/N|2 exhibit 1/f" law [5]
with the integer exponent v=2.000%0.001 [see Fig. 1(c)],
which is reminiscent of Brownian motions. The 1/f" law
with v>0 is often generated in classical dynamical sys-
tems of weakly ergodic class, e.g., in the intermittent
chaos and general Hamiltonian systems, and is called
simply as 1/f noise [5]. Despite recent active works on
1/f noise in classical systems [6], little attention has been
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FIG. 1. Transport properties of &-function model for
F=0.001: (a) T,; (b) S;(n); (c) power spectrum P (f) of (a) in
logarithmic scales, including a reference line corresponding to
P« f~2, (ko=10is used throughout in Figs. 1-4.)

given to 1/f noise in quantum systems.

The results in Fig. 1 are mysterious, if one should re-
call the lack of extrinsic randomness introduced into the
system and the linearity of the Schrodinger equation [7].
A clue to resolving the puzzle will be involved in the
nonautonomous feature of the map (2). With increasing
the field strength, more interesting issues will come out as
described below.

(IT) A strong field case (F >>F,):T, shows a sequence
of steadily-elongated plateaus which are connected by
bursts. [See Fig. 2(a).] Both the direction (upwards or
downwards) and the magnitude of each burst are not pre-
dictable, which is in marked contrast with the feature of
the intermittent chaos where only the location of bursts is
erratic. The component S,;(n) in Fig. 2(b) wanders from
one stagnant region to another in an unpredictable way,
whose overall feature looks like a living animal. As in the
case (I), however, the positive Lyapunov exponent is van-
ishing. The power spectrum of Fig. 2(a) again shows the
1/f? law [Fig. 2(c)]. Locally, a picture of the tilted band
structure is meaningful. Laminar oscillations in the pla-
teaus [see the inset of Fig. 2(a)] are caused by the increase
of k, values within each band, whereas bursts are due to
the Zener tunneling to adjacent bands at the zone boun-
daries. In fact, we recognize that the burst occurs when-
ever k, =kpg is satisfied.

We shall now proceed to examine the transport proper-
ties in generic systems with barriers of finite width for the
cases of d/a =0.1 and 0.5. In this case the problem is
actually the over-barrier transmission. Despite this fact,
a gross feature of T, for F =10 is identical to Fig. 2(a)
(see Fig. 3) and corresponding power spectrum obeys the
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FIG. 2. Same as in Fig. 1, but for F =10.
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FIG. 3. Transport properties for models with barriers of

finite width: (a) d/a =0.1; (b) d/a =0.5. Insets display the
corresponding power spectra.

1/f? law (see insets of Fig. 3). Thus the integer exponent
in the 1/f? law holds universally to periodic superlattices
in the electric field, irrespective of the field strength and
the width of barriers.
To characterize the nonstationary behavior of T, we

shall calculate the Allan variance [8]

2

> . 3)

In the Markovian process, the variance in (3) tends to
zero as N is increased, satisfying a scaling law aZA =NY
with ¥ <0. In the 1/f" cases, however, an additional
scaling region that breaks the law of large numbers is
proposed [8]: it is the fractional noise regime with
v =v—1. Figure 4 shows, besides the Markovian regime,
there generally appears this scaling regime with the ex-
ponent ¥y =1 (=2—1). Eventually the result provides an

o2 n=( Lsr-Lsr
A 2 N,,=1 n Nn=1 n+N
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FIG. 4. Allan variance o%(N) in logarithmic scales, includ-
ing a reference line corresponding to 0% (N) = N!. Symbols are
used for §-function model with F =0.001 (@) and with F =10
(0) and for d /a =0.1 with F =0.001 (@) and with F =10 (O).

additional justification of the universality of 1/f? law in
the present system and also indicates the breakdown of
the law of large numbers.

To design the experiments, we should systematically
change quantum systems by increasing the length of su-
perlattices by a step of a, against repeated injections of
electrons with the fixed k,. It should be noted that we
have also analyzed the transmission coefficient as a func-
tion of k, under the fixed number of walls, finding again
the 1/f2 law. The latter case would be experimentally
more accessible and will be described elsewhere [9].

In conclusion, the electric conductance as a function of
the number of barriers shows a nonstationary weak chaos
characterized by both the 1/f" law and anomalous Allan
variance. In particular, we have found the integer ex-
ponent v=2 in marked contrast with v=1.6 estimated by
Jauslin [4] and also showed the universality of this in-
teger exponent by tuning both the width of barriers and
strength of the applied field. We should emphasize many
puzzling features of S matrices in the tunneling-induced
weak chaos in quantum systems.

The authors greatly acknowledge the latest fruitful
correspondence with H. R. Jauslin now at Universite de
Bourgogne and useful discussions with Y. Aizawa and T.
Ogawa.
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FIG. 1. Transport properties of &-function model for
F=0.001: (a) T,; (b) §y,(n); (c) power spectrum P (/) of (a) in
logarithmic scales, including a reference line corresponding to
P f72 (ky=101is used throughout in Figs. 1-4.)
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FIG. 2. Same as in Fig. 1, but for F =10.
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FIG. 3. Transport properties for models with barriers of
finite width: (a) d/a =0.1; (b) d/a =0.5. Insets display the
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corresponding power spectra.




